A NOTE ON THE PAPER BY V.L.DOBROVOL'SKII "ON THE APPLICATION OF COMPLEX VARIABLES TO THE PLANE PLASTIC STRAIN"
 PEREMENNYYG: X PLOBKOI PIAaticheskoi deponkatail")

PMM Vol.29, № 2, 1965, p. 400

> B.D.ANNIN
(Novosibirsk)
(Received November 16, 1964)

The necessary and sufficient conditions for a stress function $F(x, y)$ to be biharmonic in the plastic region D of the (x, y) plane were derived by Dobrovol'skli in [1]. These conditions are as follows. Let the function $\theta=\theta(x, y)(x, y) \in D$ be defined in terms of $F(x, y)$ from Equation
$\tan \theta(x, y)=\frac{2 \tau}{\sigma_{y}-\sigma_{x}} \quad\left(\sigma_{x}=\frac{k}{2} \frac{\partial^{2} F}{\partial y^{2}}, \quad \sigma_{y}=\frac{k}{2} \frac{\partial^{2} F}{\partial x^{2}}, \quad \tau=-\frac{k}{2} \frac{\partial^{2} F}{\partial x \partial y}\right)$
Here $\sigma_{x}, \sigma_{y}, \tau$ are components of the stress tensor, \hbar is the yield point in pure shear. In the region D the function $\theta(x, y)$ satisfies the system of equations

$$
\begin{equation*}
\frac{\partial^{2} \theta}{\partial x^{2}}-\frac{\partial^{2} \theta}{\partial y^{2}}-2 \frac{\partial \theta}{\partial x} \frac{\partial \theta}{\partial y}=0, \quad 2 \frac{\partial^{2} \theta}{\partial x \partial y}+\left(\frac{\partial \theta}{\partial x}\right)^{2}-\left(\frac{\partial \theta}{\partial y}\right)^{2}=0 \tag{1}
\end{equation*}
$$

The following function is a particular solution of the above system

$$
\theta^{*}(x, y)=-2 \tan ^{-1} \frac{y-y_{0}}{x-x_{0}}+\theta_{0} \quad\left(x_{0}, y_{0}, \theta_{0}=\text { const }\right)
$$

The biharmonic property of the plastic stress function, to which $\theta^{*}(x, y)$ corresponds for $x_{0}=y_{0}=\theta_{0}=0$, has been substantially utilized by Galin in [2]. Let us prove that there are no solutions of the system (1) different from $\theta^{*}(x, y)$. Obviously, $\theta(x, y)$ is an analytic function with respect to x, y. Differentiating (1) with respect to x and y we determine all the third derivatives of the function $\theta(x, y)$. Then, from the condition

$$
\frac{\partial}{\partial x} \frac{\partial^{3} \theta}{\partial y^{3}}=\frac{\partial}{\partial y} \frac{\partial^{3} \theta}{\partial x \partial y^{2}}
$$

we find

$$
\begin{equation*}
\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}=0 \tag{2}
\end{equation*}
$$

Equation (2) also follows from the condition

$$
\frac{\partial}{\partial x} \frac{\partial^{3} \theta}{\partial x^{2} \partial y}=\frac{\partial}{\partial y}\left(\frac{\partial^{2} \theta}{\partial x^{3}}\right)
$$

From Equations (1) we form Equation

$$
\begin{equation*}
\left[\left(\frac{\partial \theta}{\partial y}\right)^{2}-\left(\frac{\partial \theta}{\partial x}\right)^{2}\right]\left[\frac{\partial^{2} \theta}{\partial x^{2}}-\frac{\partial^{2} \theta}{\partial y^{2}}\right]-4 \frac{\partial \theta}{\partial x} \frac{\partial \theta}{\partial y} \frac{\partial^{2} \theta}{\partial x \partial y}=0 \tag{3}
\end{equation*}
$$

Applying the Legendre transformation to Equations (2) and (3), 1.e. introducing the new variables ξ, η and a new function $\Phi(\xi, \eta)$ according to Formulas $\xi=\partial \theta / \partial x, \eta=\partial \theta / \partial y, \Phi=x \xi+y \eta-\theta$ and transferring to polar coordinates in the (ξ, η) plane, we find

$$
\frac{\partial^{2} \Phi}{\partial r^{2}}=0, \quad \frac{\partial^{2} \Phi}{\partial \varphi^{2}}+r \frac{\partial \Phi}{\partial r}=0
$$

Hence follows

$$
\begin{equation*}
\theta=c \tan ^{-1} \frac{y-b}{x-a}+d \quad(a, b, c, d=\text { const }) \tag{4}
\end{equation*}
$$

Substituting (4) into the first Equation of (1) we find $0=-2$. Thus, there are no solutions of the system of equations (1) different from $\theta^{*}(x, y)$.

BIBLIOGRAPHY

1. Dobrovol'skii, V.L., o primenenii kompleksnykh peremennykh k ploskoi plasticheskoi deformatsif (on the application of complex variables to the plane plastic deformations). PMM Vol. 24, № 5, 1960.
2. Galin, L.A., Ploskaia uprugo-plasticheskaia zadacha. Plasticheskie oblasti u krugovykh otverstil v plastinkakh i balkakh (Plane elasticplastic problem. Plastic regions near circular holes in plates and beams). $P M M$ Vol.10, № 3, 1946.
